Geometrical interpretation of matrices

Walter Trump, 2017-02-03
An area matrix (A, M) is a combination of a positive matrix A and a set M of continuous graphs.

Main definition

(1) A matrix $A=\left(\mathrm{a}_{\mathrm{ij}}\right) \in \mathbb{R}^{m \times n}$ whose elements are positive real numbers with the total sum S_{A} combined with a set $M=\left\{F_{0}, F_{1}, F_{2}, \ldots F_{m}, G_{0}, G_{1}, G_{2}, \ldots G_{n}\right\}$ of graphs of continuous real functions is called area matrix if the following conditions are satisfied for $\mathrm{i} \in\{0,1,2, \ldots, m\}, j \in\{0,1,2, \ldots, n\}$ and two positive real numbers x_{n} and y_{m} :
(a) $F_{i}=\left\{\left(x, f_{i}(x)\right) \mid x \in \mathbb{R}\right.$ and $\left.0 \leq x \leq x_{n}\right\}$ and $G_{j}=\left\{\left(g_{j}(y), y\right) \mid y \in \mathbb{R}\right.$ and and $\left.0 \leq y \leq y_{m}\right\}$ with $f_{i}:\left[0, x_{n}\right] \longrightarrow\left[0, y_{m}\right]$ and $g_{j}:\left[0, y_{m}\right] \longrightarrow\left[0, x_{n}\right]$
(b) $0=f_{0}(x)<f_{1}(x)<f_{2}(x)<\ldots<f_{m-1}(x)<f_{m}(x)=y_{m}$ for all $x \in\left[0, x_{n}\right]$ and $0=g_{0}(y)<g_{1}(y)<g_{2}(y)<\ldots<g_{n-1}(y)<g_{n}(y)=x_{n} \quad$ for all $y \in\left[0, y_{m}\right]$
(c) $\left|\mathrm{F}_{\mathrm{i}} \cap \mathrm{G}_{\mathrm{j}}\right|=1$
(d) All functions are differentiable in all points except intersections.
(d) $a_{m+1-i, j}=$ area of the locus $\left\{(x, y) \mid f_{i-1}(x) \leq y<f_{i}(x)\right.$ and $\left.g_{j-1}(y) \leq x<g_{j}(y)\right\}$ if $i, j>0$.

Remarks
The graphs $F_{0}, G_{0}, F_{m}, G_{n}$ describe the sides of a rectangle with area $e^{2} \cdot x_{n} \cdot y_{m}=S_{A}$ with the the size factor $e=\sqrt{\frac{S_{A}}{x_{n} y_{m}}}$.
This rectangle is partitioned into $\mathrm{m} \cdot \mathrm{n}$ parts (geometric shapes) by the $2 \cdot(\mathrm{n}-1)$ inner graphs
$F_{1}, F_{2}, \ldots F_{m-1}, G_{1}, G_{2}, \ldots G_{n-1}$.
The area of each part is equal to the associated entry of the matrix.
The graphs $F_{0}, F_{1}, F_{2}, \ldots F_{m}$ do not intersect. The graphs $G_{0}, G_{1}, G_{2}, \ldots G_{n}$ do not intersect.
There are $(m+1) \cdot(n+1)$ intersections $P_{i j}\left(x_{i j}, y_{i j}\right)$ of graphs F_{i} and G_{j}.
The connections between neighbor intersections are smooth lines.
This definition was inspired by William Walkington's idea of area magic squares.
(2) An area matrix (A, M) is called area square matrix if $m=n$ and $x_{n}=y_{m}$.
(3) A matrix $A=\left(\mathrm{a}_{\mathrm{ij}}\right) \in \mathbb{N}^{\mathrm{n} \times \mathrm{n}}$ of order $\mathrm{n}>2$ with n^{2} distinct entries is called magic square with magic sum S if the following conditions are satisfied for all $i, j \in\{0,1,2, \ldots, n\}$:
(a) $\sum_{k=1}^{n} a_{i k}=\sum_{k=1}^{n} a_{k j}=\mathrm{S}$
(sum of the numbers in a row or a column)
(b) $\quad \sum_{k=1}^{n} a_{k k}=\sum_{k=1}^{n} a_{k,(n-k+1)}=\mathrm{S}$
(sum of the numbers in two diagonals)

The matrix A is called classical magic square if the entries are $1,2,3, \ldots \mathrm{n}^{2}$.
The matrix A is called semi-magic square if condition (b) is not satisfied.
(4) An area matrix (A, M) is called area magic square if the matrix is a magic square.

Further definitions which are also agreed upon with William Walkington
(5) An area matrix (A, M) is called orthogonal if all graphs of M are constant.
(The rectangle is partitioned into $\mathrm{m} \cdot \mathrm{n}$ rectangles.)
(6) An area matrix (A, M) is called linear if all graphs of M are linear. (The rectangle is partitioned into $\mathrm{m} \cdot \mathrm{n}$ convex quadrilaterals.)
(7) An area matrix (A, M) is called affine if all graphs F_{i} and G_{i} are linear in each interval between two consecutive intersections on each graph.
That means: Two neighbor intersections are connected with a straight line segment, the shortest possible connection. The Latin word „affinis" means „connected with". (The rectangle is partitioned into $\mathrm{m} \cdot \mathrm{n}$ quadrilaterals - not necessarily convex.)
(8) An area matrix (A, M) is called convex if all parts are convex. (Each convex area matrix is affine, but not all affine area matrices are convex.)

Further definitions which are not generally agreed upon
(9) An area matrix (A, M) is called semi-affine if all graphs F_{i} or all graphs G_{j} are linear in each interval between two consecutive intersections on each graph F_{i} or each graph G_{i}.
(10) An area matrix (A, M) is called semi-linear if all graphs F_{i} or all graphs G_{j} are linear.
(11) An area matrix (A, M) is called semi- orthogonal if all graphs F_{i} or all graphs G_{j} are constant. (In a semi-constant linear area matrix the rectangle is partitioned into $\mathrm{m} \cdot \mathrm{n}$ trapezoids (trapeziums).)

