Geometrical interpretation of matrices

Walter Trump, 2017-02-03

An *area matrix* (A, M) is a combination of a positive matrix A and a set M of continuous graphs.

Main definition

(1) A matrix $A = (a_{ij}) \in \mathbb{R}^{m \times n}$ whose elements are positive real numbers with the total sum S_A combined with a set $M = \{F_0, F_1, F_2, ..., F_m, G_0, G_1, G_2, ..., G_n\}$ of graphs of continuous real functions is called **area matrix** if the following conditions are satisfied

- for $i \in \{0,\,1,\,2,\,...,\,m\}$, $\,j \in \{0,\,1,\,2,\,...,\,n\}$ and two positive real numbers x_n and y_m :
- (a) $F_i = \{ (x, f_i(x)) \mid x \in \mathbb{R} \text{ and } 0 \le x \le x_n \}$ and $G_j = \{ (g_j(y), y) \mid y \in \mathbb{R} \text{ and } and 0 \le y \le y_m \}$ with $f_i : [0, x_n] \longrightarrow [0, y_m]$ and $g_j : [0, y_m] \longrightarrow [0, x_n]$
- (b) $0 = f_0(x) < f_1(x) < f_2(x) < ... < f_{m-1}(x) < f_m(x) = y_m$ for all $x \in [0, x_n]$ and $0 = g_0(y) < g_1(y) < g_2(y) < ... < g_{n-1}(y) < g_n(y) = x_n$ for all $y \in [0, y_m]$
- (c) $|F_i \cap G_j| = 1$
- (d) All functions are differentiable in all points except intersections.
- (d) $a_{m+1-i, j} = \text{area of the locus} \{ (x, y) \mid f_{i-1} (x) \le y < f_i(x) \text{ and } g_{j-1} (y) \le x < g_j(y) \}$ if i, j > 0.

Remarks

The graphs F_0 , G_0 , F_m , G_n describe the sides of a rectangle with area $e^2 \cdot x_n \cdot y_m = S_A$ with the the size factor $e = \sqrt{\frac{S_A}{x_n \cdot y_m}}$. This rectangle is partitioned into $m \cdot n$ parts (geometric shapes) by the $2 \cdot (n - 1)$ inner graphs F_1 , F_2 , ... F_{m-1} , G_1 , G_2 , ... G_{n-1} . The area of each part is equal to the associated entry of the matrix. The graphs F_0 , F_1 , F_2 , ... F_m do not intersect. The graphs G_0 , G_1 , G_2 , ... G_n do not intersect. There are $(m + 1) \cdot (n + 1)$ intersections $P_{ij}(x_{ij}, y_{ij})$ of graphs F_i and G_j . The connections between neighbor intersections are smooth lines.

This definition was inspired by William Walkington's idea of area magic squares.

(2) An area matrix (A, M) is called *area square matrix* if m = n and $x_n = y_m$.

(3) A matrix $A = (a_{ij}) \in \mathbb{N}^{n \times n}$ of order n > 2 with n^2 distinct entries is called *magic square* with magic sum S if the following conditions are satisfied for all i, $j \in \{0, 1, 2, ..., n\}$:

- (a) $\sum_{k=1}^{n} a_{ik} = \sum_{k=1}^{n} a_{kj} = S$ (sum of the numbers in a row or a column)
- (b) $\sum_{k=1}^{n} a_{kk} = \sum_{k=1}^{n} a_{k,(n-k+1)} = S$ (sum of the numbers in two diagonals)

The matrix A is called *classical magic square* if the entries are 1, 2, 3, ... n^2 . The matrix A is called *semi-magic square* if condition (b) is not satisfied.

(4) An area matrix (A, M) is called area magic square if the matrix is a magic square.

Further definitions which are also agreed upon with William Walkington

- (5) An area matrix (A, M) is called *orthogonal* if all graphs of M are constant.(The rectangle is partitioned into m n rectangles.)
- (6) An area matrix (A, M) is called *linear* if all graphs of M are linear.(The rectangle is partitioned into m n convex quadrilaterals.)
- (7) An area matrix (A, M) is called *affine* if all graphs F_i and G_i are linear in each interval between two consecutive intersections on each graph.
 That means: Two neighbor intersections are connected with a straight line segment, the shortest possible connection. The Latin word "affinis" means "connected with". (The rectangle is partitioned into m·n quadrilaterals not necessarily convex.)
- (8) An area matrix (A, M) is called *convex* if all parts are convex.
 (Each convex area matrix is affine, but not all affine area matrices are convex.)

Further definitions which are not generally agreed upon

- (9) An area matrix (*A*, *M*) is called *semi-affine* if all graphs F_i or all graphs G_j are linear in each interval between two consecutive intersections on each graph F_i or each graph G_i.
- (10) An area matrix (*A*, *M*) is called *semi-linear* if all graphs F_i or all graphs G_j are linear.
- (11) An area matrix (A, M) is called *semi- orthogonal* if all graphs F_i or all graphs G_j are constant.
 (In a semi-constant linear area matrix the rectangle is partitioned into m·n trapezoids (trapeziums).)